ft: fixed modrm target calculation

While implementing some more mnemonics and testing
them, it was clear that modrm parsing was wrong.
Now reg to reg and immediates, together with
GPR1 interpretation should work as expected.

GPR1 interpretation can currently not be merged
into the modrm function, as with the current
abstraction the REG needs to select the correct
mnemonic, for which we need to also know the second
operand, which will only be parsed afterwards.
But this will be incorporated at some point, this
just marks the first working state.
This commit is contained in:
2025-05-13 12:07:22 +09:00
parent 51b28b3bac
commit a25e0a3890
3 changed files with 450 additions and 117 deletions

View File

@@ -2,12 +2,12 @@ use core::fmt;
use std::{fs::File, io::Read, process::exit};
use crate::aout::Aout;
use crate::instructions::{Displacement, MemoryIndex, RegisterId, SegmentRegister};
use crate::modrm;
use crate::instructions::{MemoryIndex, ModRmTarget, OperandSize, RegisterId, SegmentRegister};
use crate::{
Args,
instructions::{ImmediateByte, ImmediateWord, Instruction, Opcode, Register},
instructions::{ImmediateByte, ImmediateWord, Instruction, Mnemonic, Register},
};
use crate::{modrmb, modrms, modrmv};
#[derive(Debug)]
/// Generic errors, which are encountered during parsing.
@@ -78,8 +78,6 @@ impl Disassembler {
// advance to operand
self.offset += 1;
let byte = self.text[self.offset];
// jump to right after operand
self.offset += 1;
self.instruction.raw.push(byte);
byte
}
@@ -91,51 +89,69 @@ impl Disassembler {
self.offset += 1;
let byte1 = self.text[self.offset];
let byte2 = self.text[self.offset + 1];
// jump right after operand
self.offset += 2;
// jump onto last operand
self.offset += 1;
self.instruction.raw.push(byte1);
self.instruction.raw.push(byte2);
u16::from_le_bytes([byte1, byte2])
}
/// Takes in a modrm byte and returns mod, reg and r/m.
fn deconstruct_modrm_byte(modrm: u8) -> (u8, u8, u8) {
let mode = (modrm >> 6) & 0b11;
let reg = (modrm >> 3) & 0b111;
let rm = modrm & 0b111;
(mode, reg, rm)
}
/// Parse a single modrm byte, return the resulting MemoryIndex and advance the offset.
/// Returns the parsed modrm memory access and the source register
pub fn parse_modrm_byte(&mut self) -> (MemoryIndex, RegisterId) {
/// Returns the parsed modrm target and the source register
pub fn parse_modrm_byte(&mut self, size: OperandSize) -> (ModRmTarget, RegisterId) {
// advance to operand
self.offset += 1;
let modrm = self.text[self.offset];
self.instruction.raw.push(modrm);
// jump right after operand
self.offset += 1;
// Calculate ModRM byte with bitmask
let modulo = modrm >> 6;
let reg_id = (modrm >> 3) & 7;
let rm = modrm & 7;
let (mode, reg, rm) = Self::deconstruct_modrm_byte(modrm);
let displacement = match modulo {
log::debug!(
"0x{:04x} deconstructed into: 0b{:b}, 0b{:b}, 0b{:b}",
modrm,
mode,
reg,
rm
);
let mut displacement = None;
match mode {
0b00 => {
if rm == 0b110 {
log::debug!("Additional word during ModRM parsing was read with mod 0.");
Some(Displacement::Word(self.parse_word()))
displacement = Some(OperandSize::Word(self.parse_word()));
} else {
None
displacement = None;
}
}
0b01 => {
log::debug!("Additional byte during ModRM parsing was read.");
Some(Displacement::Byte(self.parse_byte()))
displacement = Some(OperandSize::Byte(self.parse_byte()))
}
0b10 => {
log::debug!("Additional word during ModRM parsing was read.");
Some(Displacement::Word(self.parse_word()))
displacement = Some(OperandSize::Word(self.parse_word()));
}
0b11 => {
// XXX is this correct?
log::debug!(
"No displacement, as reg to reg - maybe some implementation is missing here"
);
None
log::debug!("ModRM to reg");
let target = match size {
OperandSize::Byte(_) => {
ModRmTarget::Register(Register::by_id(OperandSize::Byte(rm)))
}
OperandSize::Word(_) => {
ModRmTarget::Register(Register::by_id(OperandSize::Word(rm.into())))
}
};
return (target, reg);
}
_ => panic!("Invalid ModRM byte encountered"),
};
@@ -184,7 +200,35 @@ impl Disassembler {
_ => panic!("Invalid ModRM byte encountered"),
};
(index, reg_id)
(ModRmTarget::Memory(index), reg)
}
/// Match the modrm reg bits to the GPR1 mnemonics.
pub fn modrm_reg_to_mnemonic(reg: u8, target: ModRmTarget, imm: OperandSize) -> Mnemonic {
match imm {
OperandSize::Byte(b) => match reg {
0b000 => Mnemonic::ADD_Ib(target, ImmediateByte(b)),
0b001 => Mnemonic::OR_Ib(target, ImmediateByte(b)),
0b010 => Mnemonic::ADC_Ib(target, ImmediateByte(b)),
0b011 => Mnemonic::SBB_Ib(target, ImmediateByte(b)),
0b100 => Mnemonic::AND_Ib(target, ImmediateByte(b)),
0b101 => Mnemonic::SUB_Ib(target, ImmediateByte(b)),
0b110 => Mnemonic::XOR_Ib(target, ImmediateByte(b)),
0b111 => Mnemonic::CMP_Ib(target, ImmediateByte(b)),
_ => panic!("Illegal GPR1 mnemonic"),
},
OperandSize::Word(w) => match reg {
0b000 => Mnemonic::ADD_Iv(target, ImmediateWord(w)),
0b001 => Mnemonic::OR_Iv(target, ImmediateWord(w)),
0b010 => Mnemonic::ADC_Iv(target, ImmediateWord(w)),
0b011 => Mnemonic::SBB_Iv(target, ImmediateWord(w)),
0b100 => Mnemonic::AND_Iv(target, ImmediateWord(w)),
0b101 => Mnemonic::SUB_Iv(target, ImmediateWord(w)),
0b110 => Mnemonic::XOR_Iv(target, ImmediateWord(w)),
0b111 => Mnemonic::CMP_Iv(target, ImmediateWord(w)),
_ => panic!("Illegal GPR1 mnemonic"),
},
}
}
/// Decode instructions from the text section of the provided binary
@@ -204,30 +248,177 @@ impl Disassembler {
// additional raw bytes will be pushed by parse functions
self.instruction.raw.push(opcode);
// XXX: convert this copy and paste horror into a proc macro
self.instruction.opcode = match opcode {
// ADD
0x00 => modrm!(self, ADD_EbGb),
0x01 => modrm!(self, ADD_EvGv),
0x02 => modrm!(self, ADD_GbEb),
0x03 => modrm!(self, ADD_GvEv),
0x04 => Opcode::ADD_ALIb(ImmediateByte(self.parse_byte())),
0x05 => Opcode::ADD_AXIv(ImmediateWord(self.parse_word())),
// PUSH
0x06 => Opcode::PUSH(SegmentRegister::by_id(self.parse_modrm_byte().1)),
// POP
0x07 => Opcode::POP(SegmentRegister::by_id(self.parse_modrm_byte().1)),
// OR
0x08 => modrm!(self, OR_EbGb),
0x0A => modrm!(self, OR_GbEb),
// INT
0xCD => Opcode::INT(ImmediateByte(self.parse_byte())),
// MOV
0xBB => Opcode::MOV_BXIv(ImmediateWord(self.parse_word())),
0x00 => modrmb!(self, ADD_FromReg),
0x01 => modrmv!(self, ADD_FromReg),
0x02 => modrmb!(self, ADD_ToReg),
0x03 => modrmv!(self, ADD_ToReg),
0x04 => Mnemonic::ADD_ALIb(ImmediateByte(self.parse_byte())),
0x05 => Mnemonic::ADD_AXIv(ImmediateWord(self.parse_word())),
0x06 => Mnemonic::PUSH_S(SegmentRegister::ES),
0x07 => Mnemonic::POP_S(SegmentRegister::ES),
0x08 => modrmb!(self, OR_FromReg),
0x09 => modrmv!(self, OR_FromReg),
0x0A => modrmb!(self, OR_ToReg),
0x0B => modrmv!(self, OR_ToReg),
0x0C => Mnemonic::OR_ALIb(ImmediateByte(self.parse_byte())),
0x0D => Mnemonic::OR_AXIv(ImmediateWord(self.parse_word())),
0x0E => Mnemonic::PUSH_S(SegmentRegister::CS),
0x0F => panic!("Opcode 0x0F (POP CS) is considered undefined"),
0x10 => modrmb!(self, ADC_FromReg),
0x11 => modrmv!(self, ADC_FromReg),
0x12 => modrmb!(self, ADC_ToReg),
0x13 => modrmv!(self, ADC_ToReg),
0x14 => Mnemonic::ADC_ALIb(ImmediateByte(self.parse_byte())),
0x15 => Mnemonic::ADC_AXIv(ImmediateWord(self.parse_word())),
0x16 => Mnemonic::PUSH_S(SegmentRegister::SS),
0x17 => Mnemonic::POP_S(SegmentRegister::SS),
0x18 => modrmb!(self, SBB_FromReg),
0x19 => modrmv!(self, SBB_FromReg),
0x1A => modrmb!(self, SBB_ToReg),
0x1B => modrmv!(self, SBB_ToReg),
0x1C => Mnemonic::SBB_ALIb(ImmediateByte(self.parse_byte())),
0x1D => Mnemonic::SBB_AXIv(ImmediateWord(self.parse_word())),
0x1E => Mnemonic::PUSH_S(SegmentRegister::DS),
0x1F => Mnemonic::POP_S(SegmentRegister::DS),
0x20 => modrmb!(self, AND_FromReg),
0x21 => modrmv!(self, AND_FromReg),
0x22 => modrmb!(self, AND_ToReg),
0x23 => modrmv!(self, AND_ToReg),
0x24 => Mnemonic::AND_ALIb(ImmediateByte(self.parse_byte())),
0x25 => Mnemonic::AND_AXIv(ImmediateWord(self.parse_word())),
0x26 => Mnemonic::OVERRIDE(SegmentRegister::ES),
0x27 => Mnemonic::DAA,
0x28 => modrmb!(self, SUB_FromReg),
0x29 => modrmv!(self, SUB_FromReg),
0x2A => modrmb!(self, SUB_ToReg),
0x2B => modrmv!(self, SUB_ToReg),
0x2C => Mnemonic::SUB_ALIb(ImmediateByte(self.parse_byte())),
0x2D => Mnemonic::SUB_AXIv(ImmediateWord(self.parse_word())),
0x2E => Mnemonic::OVERRIDE(SegmentRegister::CS),
0x2F => Mnemonic::DAS,
0x30 => modrmb!(self, XOR_FromReg),
0x31 => modrmv!(self, XOR_FromReg),
0x32 => modrmb!(self, XOR_ToReg),
0x33 => modrmv!(self, XOR_ToReg),
0x34 => Mnemonic::XOR_ALIb(ImmediateByte(self.parse_byte())),
0x35 => Mnemonic::XOR_AXIv(ImmediateWord(self.parse_word())),
0x36 => Mnemonic::OVERRIDE(SegmentRegister::SS),
0x37 => Mnemonic::AAA,
0x38 => modrmb!(self, CMP_FromReg),
0x39 => modrmv!(self, CMP_FromReg),
0x3A => modrmb!(self, CMP_ToReg),
0x3B => modrmv!(self, CMP_ToReg),
0x3C => Mnemonic::CMP_ALIb(ImmediateByte(self.parse_byte())),
0x3D => Mnemonic::CMP_AXIv(ImmediateWord(self.parse_word())),
0x3E => Mnemonic::OVERRIDE(SegmentRegister::DS),
0x3F => Mnemonic::AAS,
0x40 => Mnemonic::INC(Register::AX),
0x41 => Mnemonic::INC(Register::CX),
0x42 => Mnemonic::INC(Register::DX),
0x43 => Mnemonic::INC(Register::BX),
0x44 => Mnemonic::INC(Register::SP),
0x45 => Mnemonic::INC(Register::BP),
0x46 => Mnemonic::INC(Register::SI),
0x47 => Mnemonic::INC(Register::DI),
0x48 => Mnemonic::DEC(Register::AX),
0x49 => Mnemonic::DEC(Register::CX),
0x4A => Mnemonic::DEC(Register::DX),
0x4B => Mnemonic::DEC(Register::BX),
0x4C => Mnemonic::DEC(Register::SP),
0x4D => Mnemonic::DEC(Register::BP),
0x4E => Mnemonic::DEC(Register::SI),
0x4F => Mnemonic::DEC(Register::DI),
0x50 => Mnemonic::PUSH_R(Register::AX),
0x51 => Mnemonic::PUSH_R(Register::CX),
0x52 => Mnemonic::PUSH_R(Register::DX),
0x53 => Mnemonic::PUSH_R(Register::BX),
0x54 => Mnemonic::PUSH_R(Register::SP),
0x55 => Mnemonic::PUSH_R(Register::BP),
0x56 => Mnemonic::PUSH_R(Register::SI),
0x57 => Mnemonic::PUSH_R(Register::DI),
0x58 => Mnemonic::POP_R(Register::AX),
0x59 => Mnemonic::POP_R(Register::CX),
0x5A => Mnemonic::POP_R(Register::DX),
0x5B => Mnemonic::POP_R(Register::BX),
0x5C => Mnemonic::POP_R(Register::SP),
0x5D => Mnemonic::POP_R(Register::BP),
0x5E => Mnemonic::POP_R(Register::SI),
0x5F => Mnemonic::POP_R(Register::DI),
0x60..=0x6F => panic!("0x06 to 0x06F is considered undefined."),
0x70 => Mnemonic::JO(ImmediateByte(self.parse_byte())),
0x71 => Mnemonic::JNO(ImmediateByte(self.parse_byte())),
0x72 => Mnemonic::JB(ImmediateByte(self.parse_byte())),
0x73 => Mnemonic::JNB(ImmediateByte(self.parse_byte())),
0x74 => Mnemonic::JZ(ImmediateByte(self.parse_byte())),
0x75 => Mnemonic::JNZ(ImmediateByte(self.parse_byte())),
0x76 => Mnemonic::JBE(ImmediateByte(self.parse_byte())),
0x77 => Mnemonic::JA(ImmediateByte(self.parse_byte())),
0x78 => Mnemonic::JS(ImmediateByte(self.parse_byte())),
0x79 => Mnemonic::JNS(ImmediateByte(self.parse_byte())),
0x7A => Mnemonic::JPE(ImmediateByte(self.parse_byte())),
0x7B => Mnemonic::JPO(ImmediateByte(self.parse_byte())),
0x7C => Mnemonic::JL(ImmediateByte(self.parse_byte())),
0x7D => Mnemonic::JGE(ImmediateByte(self.parse_byte())),
0x7E => Mnemonic::JLE(ImmediateByte(self.parse_byte())),
0x7F => Mnemonic::JG(ImmediateByte(self.parse_byte())),
// 0x80..=0x83 => panic!("GRP1 not implemented"),
0x80 => {
let (target, reg) = self.parse_modrm_byte(OperandSize::Byte(0));
let imm = self.parse_byte();
Self::modrm_reg_to_mnemonic(reg, target, OperandSize::Byte(imm))
}
0x81 => {
let (target, reg) = self.parse_modrm_byte(OperandSize::Word(0));
let imm = self.parse_word();
Self::modrm_reg_to_mnemonic(reg, target, OperandSize::Word(imm))
}
0x82 => panic!("Same as 0x80"),
0x83 => panic!("Sign extented GPR1 not yet implemented"),
0x84 => modrmb!(self, TEST),
0x85 => modrmv!(self, TEST),
0x86 => modrmb!(self, XHCG),
0x87 => modrmv!(self, XHCG),
0x88 => modrmb!(self, MOV_FromReg),
0x89 => modrmv!(self, MOV_FromReg),
0x8A => modrmb!(self, MOV_ToReg),
0x8B => modrmv!(self, MOV_ToReg),
0x8C => modrms!(self, MOV_FromSReg),
0x8E => modrms!(self, MOV_ToSReg),
0x8D => modrmv!(self, LEA),
0xCD => Mnemonic::INT(ImmediateByte(self.parse_byte())),
0xBB => Mnemonic::MOV_BXIv(ImmediateWord(self.parse_word())),
_ => {
eprintln!(
"Encountered unknown self.instructionuction '0x{:x}'",
opcode
);
eprintln!("Encountered unknown instruction '0x{:x}'", opcode);
eprintln!("Offset might be misaligned and data is being interpreted.");
eprintln!("Existing to avoid further misinterpretation...");
exit(1);
@@ -237,6 +428,7 @@ impl Disassembler {
println!("{}", self.instruction);
instructions.push(self.instruction.clone());
self.instruction = Instruction::new();
self.offset += 1;
}
Ok(instructions)

View File

@@ -1,8 +1,26 @@
#[macro_export]
/// Generate an Opcode for 'normal' ModRM instructions with mem access and a reg
macro_rules! modrm {
/// Generate a byte Opcode for 'normal' ModRM instructions with mem access and a reg
macro_rules! modrmb {
($self:ident, $variant:ident) => {{
let (idx, reg) = $self.parse_modrm_byte();
Opcode::$variant(idx, Register::by_id(reg))
let (target, reg) = $self.parse_modrm_byte(OperandSize::Byte(0));
Mnemonic::$variant(target, Register::by_id(OperandSize::Byte(reg)))
}};
}
#[macro_export]
/// Generate a word Opcode for 'normal' ModRM instructions with mem access and a reg
macro_rules! modrmv {
($self:ident, $variant:ident) => {{
let (target, reg) = $self.parse_modrm_byte(OperandSize::Word(0));
Mnemonic::$variant(target, Register::by_id(OperandSize::Word(reg.into())))
}};
}
#[macro_export]
/// Generate a word Opcode for 'normal' ModRM instructions with mem access and a segment reg
macro_rules! modrms {
($self:ident, $variant:ident) => {{
let (target, reg) = $self.parse_modrm_byte(OperandSize::Word(0));
Mnemonic::$variant(target, SegmentRegister::by_id(reg))
}};
}

View File

@@ -12,9 +12,9 @@ pub type w = u16;
/// contains the `Opcode` that will be executed, alongside its starting offset
/// and the raw parsed bytes
pub struct Instruction {
pub start: usize, // location of the instruction start
pub raw: Vec<u8>, // raw value of instruction
pub opcode: Opcode, // actual instruction
pub start: usize, // location of the instruction start
pub raw: Vec<u8>, // raw value of instruction
pub opcode: Mnemonic, // actual instruction
}
impl Instruction {
@@ -22,7 +22,7 @@ impl Instruction {
Instruction {
start: 0,
raw: Vec::new(),
opcode: Opcode::NOP(),
opcode: Mnemonic::NOP(),
}
}
}
@@ -39,61 +39,163 @@ impl fmt::Display for Instruction {
#[derive(Debug, Clone)]
#[allow(dead_code, non_camel_case_types)]
pub enum Opcode {
/// All possible opcode variantions.
// XXX: convert this copy and paste horror in a proc macro like
// enum Opcode {
// #[derive(default_variations)]
// ADD,
// ...
// }
// which then add all variants and also create the matching logic for
// src/disasm.rs decode_instructions()
pub enum Mnemonic {
NOP(),
// ADD
ADD_EbGb(MemoryIndex, Register),
ADD_EvGv(MemoryIndex, Register),
ADD_GbEb(MemoryIndex, Register),
ADD_GvEv(MemoryIndex, Register),
ADD_FromReg(ModRmTarget, Register),
ADD_ToReg(ModRmTarget, Register),
ADD_Ib(ModRmTarget, ImmediateByte),
ADD_Iv(ModRmTarget, ImmediateWord),
ADD_ALIb(ImmediateByte),
ADD_AXIv(ImmediateWord),
// PUSH
PUSH(SegmentRegister),
PUSH_R(Register),
PUSH_S(SegmentRegister),
// POP
POP(SegmentRegister),
POP_S(SegmentRegister),
POP_R(Register),
// OR
OR_EbGb(MemoryIndex, Register),
OR_GbEb(MemoryIndex, Register),
OR_FromReg(ModRmTarget, Register),
OR_ToReg(ModRmTarget, Register),
OR_Ib(ModRmTarget, ImmediateByte),
OR_Iv(ModRmTarget, ImmediateWord),
OR_ALIb(ImmediateByte),
OR_AXIv(ImmediateWord),
// ADC
ADC_FromReg(ModRmTarget, Register),
ADC_ToReg(ModRmTarget, Register),
ADC_Ib(ModRmTarget, ImmediateByte),
ADC_Iv(ModRmTarget, ImmediateWord),
ADC_ALIb(ImmediateByte),
ADC_AXIv(ImmediateWord),
// SBB
SBB_FromReg(ModRmTarget, Register),
SBB_ToReg(ModRmTarget, Register),
SBB_Ib(ModRmTarget, ImmediateByte),
SBB_Iv(ModRmTarget, ImmediateWord),
SBB_ALIb(ImmediateByte),
SBB_AXIv(ImmediateWord),
// AND
AND_FromReg(ModRmTarget, Register),
AND_ToReg(ModRmTarget, Register),
AND_Ib(ModRmTarget, ImmediateByte),
AND_Iv(ModRmTarget, ImmediateWord),
AND_ALIb(ImmediateByte),
AND_AXIv(ImmediateWord),
// Override
OVERRIDE(SegmentRegister),
// Decimal Adjustment
DAA,
DAS,
AAA,
AAS,
// SUB
SUB_FromReg(ModRmTarget, Register),
SUB_ToReg(ModRmTarget, Register),
SUB_Ib(ModRmTarget, ImmediateByte),
SUB_Iv(ModRmTarget, ImmediateWord),
SUB_ALIb(ImmediateByte),
SUB_AXIv(ImmediateWord),
// XOR
XOR_FromReg(ModRmTarget, Register),
XOR_ToReg(ModRmTarget, Register),
XOR_Ib(ModRmTarget, ImmediateByte),
XOR_Iv(ModRmTarget, ImmediateWord),
XOR_ALIb(ImmediateByte),
XOR_AXIv(ImmediateWord),
// CMP
CMP_FromReg(ModRmTarget, Register),
CMP_ToReg(ModRmTarget, Register),
CMP_Ib(ModRmTarget, ImmediateByte),
CMP_Iv(ModRmTarget, ImmediateWord),
CMP_ALIb(ImmediateByte),
CMP_AXIv(ImmediateWord),
// INC
INC(Register),
// DEC
DEC(Register),
// Jumps
JO(ImmediateByte),
JNO(ImmediateByte),
JB(ImmediateByte),
JNB(ImmediateByte),
JZ(ImmediateByte),
JNZ(ImmediateByte),
JBE(ImmediateByte),
JA(ImmediateByte),
JS(ImmediateByte),
JNS(ImmediateByte),
JPE(ImmediateByte),
JPO(ImmediateByte),
JL(ImmediateByte),
JGE(ImmediateByte),
JLE(ImmediateByte),
JG(ImmediateByte),
// TEST
TEST(ModRmTarget, Register),
//XHCG
XHCG(ModRmTarget, Register),
// MOV
MOV_FromReg(ModRmTarget, Register),
MOV_ToReg(ModRmTarget, Register),
MOV_FromSReg(ModRmTarget, SegmentRegister),
MOV_ToSReg(ModRmTarget, SegmentRegister),
MOV_BXIv(ImmediateWord),
// LEA
LEA(ModRmTarget, Register),
// INT
INT(ImmediateByte),
// MOV
MOV_BXIv(ImmediateWord),
}
impl fmt::Display for Opcode {
impl fmt::Display for Mnemonic {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::INT(byte) => write!(f, "INT, {:x}", byte),
Self::ADD_EbGb(mem, reg) => write!(f, "ADD {}, {}", mem, reg),
Self::ADD_GbEb(mem, reg) => write!(f, "ADD {}, {}", reg, mem),
Self::ADD_FromReg(mem, reg) => write!(f, "ADD {}, {}", mem, reg),
Self::ADD_ToReg(mem, reg) => write!(f, "ADD {}, {}", reg, mem),
Self::CMP_Iv(mem, imm) => write!(f, "CMP {}, {:04x}", mem, imm),
Self::LEA(mem, reg) => write!(f, "LEA {}, {}", reg, mem),
Self::MOV_BXIv(word) => write!(f, "MOV BX, {:04x}", word),
_ => write!(f, "display not yet implemented"),
Self::XOR_FromReg(mem, reg) => write!(f, "XOR {}, {}", mem, reg),
_ => write!(f, "??? ??, ??"),
}
}
}
/// Registers of a 8086 processor
/// -x are 16bit, -l are 8bit
#[derive(Debug, Clone)]
#[allow(dead_code)]
pub enum Register {
AX,
BX,
CX,
DX,
AH,
// 8 bit
// low bytes
AL,
BL,
BH,
CH,
CL,
DH,
DL,
DI,
SI,
BP,
SP,
BL,
// high bytes
AH,
CH,
DH,
BH,
// 16 bit
AX, // accumulator
CX, // counter
DX, // data
BX, // base
SP, // stack pointer
BP, // base pointer
SI, // source index
DI, // base index
}
/// Selector for Register or Segment Register
@@ -102,25 +204,30 @@ pub type RegisterId = u8;
#[allow(dead_code)]
impl Register {
/// Find the register corresponding to the 8086 bytecode ID
pub fn by_id(id: RegisterId) -> Self {
pub fn by_id(id: OperandSize) -> Self {
match id {
0x00 => Self::AL,
0x01 => Self::CL,
0x02 => Self::DL,
0x03 => Self::BL,
0x04 => Self::AH,
0x05 => Self::CH,
0x06 => Self::DH,
0x07 => Self::BH,
0x10 => Self::AX,
0x11 => Self::CX,
0x12 => Self::DX,
0x13 => Self::BX,
0x14 => Self::SP,
0x15 => Self::BP,
0x16 => Self::SI,
0x17 => Self::DI,
_ => panic!("Invalid register ID encountered"),
OperandSize::Byte(b) => match b {
0b000 => Self::AL,
0b001 => Self::CL,
0b010 => Self::DL,
0b011 => Self::BL,
0b100 => Self::AH,
0b101 => Self::CH,
0b110 => Self::DH,
0b111 => Self::BH,
_ => panic!("Invalid 8bit register ID encountered"),
},
OperandSize::Word(w) => match w {
0b000 => Self::AX,
0b001 => Self::CX,
0b010 => Self::DX,
0b011 => Self::BX,
0b100 => Self::SP,
0b101 => Self::BP,
0b110 => Self::SI,
0b111 => Self::DI,
_ => panic!("Invalid 16bit register ID encountered"),
},
}
}
}
@@ -163,10 +270,10 @@ impl SegmentRegister {
/// Find the SRegister corresponding to the 8086 bytecode ID
pub fn by_id(id: u8) -> Self {
match id {
0x30 => Self::ES,
0x31 => Self::CS,
0x32 => Self::SS,
0x33 => Self::DS,
0x00 => Self::ES,
0x01 => Self::CS,
0x10 => Self::SS,
0x11 => Self::DS,
_ => panic!("Invalid segment register ID encountered"),
}
}
@@ -210,13 +317,29 @@ macro_rules! impl_display_and_lowerhex {
impl_display_and_lowerhex!(ImmediateByte);
impl_display_and_lowerhex!(ImmediateWord);
#[derive(Debug, Clone)]
/// ModRM byte can either target a memory location or some register
pub enum ModRmTarget {
Memory(MemoryIndex),
Register(Register),
}
impl std::fmt::Display for ModRmTarget {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
Self::Memory(idx) => write!(f, "{}", idx),
Self::Register(reg) => write!(f, "{}", reg),
}
}
}
/// A memory index operand is usually created by ModRM bytes or words.
/// e.g. [bx+si]
#[derive(Debug, Clone)]
pub struct MemoryIndex {
pub base: Option<Register>,
pub index: Option<Register>,
pub displacement: Option<Displacement>,
pub displacement: Option<OperandSize>,
}
impl fmt::Display for MemoryIndex {
@@ -224,18 +347,18 @@ impl fmt::Display for MemoryIndex {
match &self.base {
Some(base) => match &self.index {
Some(index) => match &self.displacement {
Some(displacement) => write!(f, "[{}+{}+{}]", base, index, displacement),
None => write!(f, "[{}+{}]", base, index),
Some(displacement) => write!(f, "[{} + {} + {}]", base, index, displacement),
None => write!(f, "[{} + {}]", base, index),
},
None => match &self.displacement {
Some(displacement) => write!(f, "[{}+{}]", base, displacement),
None => write!(f, "{}", base),
Some(displacement) => write!(f, "[{} + {}]", base, displacement),
None => write!(f, "[{} + 0]", base),
},
},
None => match &self.index {
Some(index) => match &self.displacement {
Some(displacement) => write!(f, "{}+{}", index, displacement),
None => write!(f, "{}", index),
Some(displacement) => write!(f, "{} + {}", index, displacement),
None => write!(f, "[{} + 0]", index),
},
None => panic!("Invalid MemoryIndex encountered"),
},
@@ -245,13 +368,13 @@ impl fmt::Display for MemoryIndex {
#[derive(Debug, Clone)]
#[allow(dead_code)]
/// Displacement for ModRM
pub enum Displacement {
/// Can be used to encode either byte or word operands
pub enum OperandSize {
Byte(u8),
Word(u16),
}
impl fmt::Display for Displacement {
impl fmt::Display for OperandSize {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Byte(byte) => write!(f, "{}", byte),