use core::fmt; use crate::operands::{ImmediateOperand, MemoryIndex, ModRmTarget}; use super::{flags::Flags, interpreter::InterpreterError, memory::Memory, register::Register}; /// Wrapper for easier argument passing of polymorph arithmetic operations. #[derive(Debug, Clone)] pub enum Operand { Immediate(crate::operands::ImmediateOperand), ModRmTarget(ModRmTarget), } /// Wrapper for easier argument passing of polymorph pop operations. #[derive(Debug, Clone)] pub enum PopTarget { Register(crate::register::Register), MemoryIndex(MemoryIndex), } type ArithmeticResult = ImmediateOperand; type Lhs = ImmediateOperand; type Rhs = ImmediateOperand; #[derive(Debug, Clone)] pub struct Computer { pub regs: Register, pub flags: Flags, pub memory: Memory, } impl Computer { pub fn new() -> Self { Self { regs: Register::new(), flags: Flags::new(), memory: Memory::new(), } } /// Decrement stack pointer and write `val` onto the stack. pub fn push_stack(&mut self, val: ImmediateOperand) -> Result<(), InterpreterError> { self.regs.push()?; self.memory.write_raw(self.regs.sp, val.into()) } /// Retrieve value from stack and increment stack pointer. pub fn pop_stack(&mut self, target: PopTarget) -> Result<(), InterpreterError> { let word = self.memory.read_raw(self.regs.sp)?; match target { PopTarget::Register(reg) => self.regs.write(reg, word.into()), PopTarget::MemoryIndex(mem_idx) => self .memory .write_raw(Memory::calc_memidx(&self.regs, mem_idx).into(), word.into())?, } self.regs.pop()?; Ok(()) } /// Perform binary `dest` = `dest` + `src`. Sets flags. pub fn add(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs + rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, lhs, rhs| { flags.cf = result < rhs; flags.of = lhs.msb() && rhs.msb() != result.msb(); flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src); } /// Perform binary `dest` = `dest` - `src`. Sets flags. pub fn sub(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs - rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, lhs, rhs| { flags.cf = lhs < rhs; flags.of = lhs.msb() != rhs.msb() && lhs.msb() != result.msb(); flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src); } /// Perform binary `dest` = `dest` | `src`. Sets flags. pub fn or(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs | rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, _, _| { flags.cf = false; flags.of = false; flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src); } /// Perform binary `dest` = `dest` & `src`. Sets flags. pub fn and(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs & rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, _, _rhs| { flags.cf = false; flags.of = false; flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src); } /// Perform binary `dest` = `dest` ^ `src`. Sets flags. pub fn xor(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs ^ rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, _, _| { flags.cf = false; flags.of = false; flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src); } /// Perform compare operation, which acts like [`Self::sub()`], but without /// saving the result and only setting [`Self::flags`]. pub fn cmp(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs - rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, lhs, rhs| { flags.cf = lhs < rhs; flags.of = lhs.msb() != rhs.msb() && lhs.msb() != result.msb(); flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, false, dest, src); } /// Perform test operation, which acts like [`Self::and()`], but without /// saving the result and only setting [`Self::flags`]. pub fn test(&mut self, dest: ModRmTarget, src: Operand) { let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs & rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, _, _| { flags.cf = false; flags.of = false; flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, false, dest, src); } /// Perform `dest` = `dest` + `src` + CF. Sets flags. pub fn adc(&mut self, dest: ModRmTarget, src: Operand) { let cf = self.flags.cf as u8; // cheating, by flattening into immediates, but this allows to easily add the opt. carry let src_with_carry = match src { Operand::Immediate(immediate_operand) => Operand::Immediate(immediate_operand + cf), Operand::ModRmTarget(mod_rm_target) => Operand::Immediate(match mod_rm_target { ModRmTarget::Memory(idx) => self.memory.read(&self.regs, idx) + cf, ModRmTarget::Register(reg) => self.regs.read(reg) + cf, }), }; let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs + rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, lhs, rhs| { flags.cf = result < rhs; flags.of = lhs.msb() && rhs.msb() != result.msb(); flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src_with_carry); } /// Perform `dest` = `dest` - (`src` + CF). Sets flags. pub fn sbb(&mut self, dest: ModRmTarget, src: Operand) { let cf = self.flags.cf as u8; // cheating, by flattening into immediates, but this allows to easily add the opt. carry let src_with_carry = match src { Operand::Immediate(immediate_operand) => Operand::Immediate(immediate_operand + cf), Operand::ModRmTarget(mod_rm_target) => Operand::Immediate(match mod_rm_target { ModRmTarget::Memory(idx) => self.memory.read(&self.regs, idx) + cf, ModRmTarget::Register(reg) => self.regs.read(reg) + cf, }), }; let op: fn(Lhs, Rhs) -> ArithmeticResult = |lhs, rhs| lhs - rhs; let flag_set: fn(&mut Flags, ArithmeticResult, Lhs, Rhs) = |flags, result, lhs, rhs| { flags.cf = result < rhs; flags.of = lhs.msb() && rhs.msb() != result.msb(); flags.zf = result.zero(); flags.sf = result.msb(); flags.pf = result.parity(); }; self.op(op, flag_set, true, dest, src_with_carry); } /// Applies a binary operator [`O`] to the value of two [`Operand`]s, saves /// it to `dest`, if `write` is set, and sets flags, according to [`F`]. /// A result can never be saved to an immediate Operand, so `dest` can only /// be a [`ModRmTarget`]. fn op(&mut self, op: O, flag_set: F, write: bool, dest: ModRmTarget, src: Operand) where O: Fn(Lhs, Rhs) -> ArithmeticResult, F: Fn(&mut Flags, ArithmeticResult, Lhs, Rhs), { let lhs = self.read_modrm(dest); let rhs = match src { Operand::Immediate(imm) => imm, Operand::ModRmTarget(target) => self.read_modrm(target), }; let result = op(lhs, rhs); if write { self.write_modrm(dest, result); } flag_set(&mut self.flags, result, lhs, rhs); } /// Write an [`ImmediateOperand`] into [`Self::memory`] or [`Self::regs`]. pub fn write_modrm(&mut self, target: ModRmTarget, val: ImmediateOperand) { match target { ModRmTarget::Memory(idx) => self.memory.write(&self.regs, idx, val), ModRmTarget::Register(reg) => self.regs.write(reg, val), }; } /// Read an [`ImmediateOperand`] from [`Self::memory`] or [`Self::regs`]. pub fn read_modrm(&self, target: ModRmTarget) -> ImmediateOperand { match target { ModRmTarget::Memory(idx) => self.memory.read(&self.regs, idx), ModRmTarget::Register(reg) => self.regs.read(reg), } } } impl fmt::Display for Computer { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} {}", self.regs, self.flags) } } #[cfg(test)] mod tests { // use super::*; }