Files
8086-rs/src/disasm.rs
2025-05-28 16:00:18 +09:00

931 lines
38 KiB
Rust

//! The main dissembling logic.
use crate::aout::Aout;
use crate::operands::{
Byte, DWord, Displacement, IByte, IWord, MemoryIndex, ModRmTarget, Operand, Pointer16,
Pointer32, Word,
};
use crate::register::{Register, RegisterId, SegmentRegister};
use crate::{
Args,
instructions::{Instruction, Mnemonic},
};
use crate::{modrm_8b_register, modrm_16b_register, modrm_sregister};
use core::fmt;
use std::{fs::File, io::Read};
#[derive(Debug)]
/// Generic errors, which are encountered during parsing.
pub enum DisasmError {
NoFile(Option<String>),
IoError(std::io::Error),
OpcodeUndefined(u8),
IllegalGroupMnemonic(u8, u8),
IllegalModRMByteMode(u8),
IllegalModRMByteIndex(u8),
IllegalOperand(String),
ReadBeyondTextSection,
// not an error per se, it indicates a single 0x00 byte padding
EndOfTextSection,
UnknownRegister(usize),
}
impl From<std::io::Error> for DisasmError {
fn from(error: std::io::Error) -> Self {
DisasmError::IoError(error)
}
}
impl fmt::Display for DisasmError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
DisasmError::NoFile(msg) => write!(f, "No file error: {:?}", msg),
DisasmError::IoError(msg) => write!(f, "{}", msg),
DisasmError::OpcodeUndefined(opcode) => write!(
f,
"Error (Undefined Opcode). '{:#04x} is considered undefined by the Spec for 8086.\nMaybe you are trying to interpret a x86 binary?\nAborting to stop misinterpretation of following instructions.",
opcode
),
DisasmError::IllegalGroupMnemonic(group, mnemonic) => write!(
f,
"Error (Illegal group mnemonic). While parsing the ModRM reg field for groups, the following bit-combination for GRP{group} is unknown: {}",
mnemonic
),
DisasmError::IllegalModRMByteMode(modrm) => write!(
f,
"Error (Illegal modrm byte). While deconstructing a ModRM byte, the following mode is unknown: {}",
modrm
),
DisasmError::IllegalModRMByteIndex(modrm) => write!(
f,
"Error (Illegal modrm byte). While deconstructing a ModRM byte, the following index is unknown: {}",
modrm
),
DisasmError::IllegalOperand(msg) => write!(f, "Error (Illegal operand). {}", msg),
DisasmError::ReadBeyondTextSection => write!(
f,
"Error (Out of bounds access). Wanted to paese an additional byte, but there is no more text section.",
),
DisasmError::UnknownRegister(id) => write!(
f,
"Error (Unknown register). The register with ID {id} is unknown",
),
DisasmError::EndOfTextSection => write!(f, "Warning. End of text section reached."),
}
}
}
#[derive(Debug, Clone)]
pub struct Disassembler {
pub offset: usize, // the current offset in the disasm process
pub text: Vec<u8>, // the aout binary
pub instruction: Instruction, // the instruction, which is currently being parsed
pub instructions: Vec<Instruction>, // all parsed instructions
}
impl Disassembler {
pub fn new(args: &Args) -> Self {
let path = args
.path
.clone()
.ok_or(DisasmError::NoFile(args.path.clone()))
.unwrap();
let mut file = File::open(path).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
let aout = Aout::new(buf);
log::debug!("{:?}", aout);
Disassembler {
offset: 0,
text: aout.text,
instruction: Instruction::new(),
instructions: Vec::new(),
}
}
/// Start the disassmble and allow for some error handling wrapped around
/// the actual decoding function.
pub fn disassemble(&mut self, dump: bool) -> Result<Vec<Instruction>, DisasmError> {
let is_ok = self.decode_instructions();
// a.out pads the text section to byte align, so the fasely interpreted
// instructions have to be removed.
self.remove_trailing_padding();
// read instructions from disassembler object instead of decode function
// to allow some error's to act as warnings (see below)
let instructions = self.instructions.clone();
// allow for warning-type errors to pass through, as they are not fatal
match is_ok {
Ok(_) => Ok(instructions),
Err(e) => match e {
DisasmError::EndOfTextSection => {
log::debug!("Solo padded 0-byte at end of file was found. Ignoring.");
Ok(instructions)
}
_ => {
if dump {
self.instructions.iter().for_each(|i| println!("{i}"));
println!(
"Encountered error during disassembly, but this is the process so far...\n{e}\nRun with RUST_LOG=debug for furhter information."
);
} else {
println!(
"Encountered error during disassembly.\nRun with --dump to get sucessfully parsed instructions.\n{e}"
);
}
Err(e)
}
},
}
}
/// Parse a single byte of the binary and advance the offset.
/// Returns the read byte (Intel b operand).
fn parse_byte(&mut self) -> Result<Byte, DisasmError> {
log::debug!("Attempting to parse byte at {:#04x} ...", self.offset);
// check if the byte would be out of bounds
if self.offset + 1 == self.text.len() {
// check if text section ends with single 0x00 padding byte
if self.text[self.offset] == 0 {
return Err(DisasmError::EndOfTextSection);
// else its just an out of bounds read
} else {
return Err(DisasmError::ReadBeyondTextSection);
}
// if not, advance offset to next byte
} else {
self.offset += 1;
}
let byte = self
.text
.get(self.offset)
.ok_or(DisasmError::ReadBeyondTextSection)?;
log::debug!("Parsed byte {byte:#04x}");
self.instruction.raw.push(*byte);
Ok(*byte)
}
/// Parse a single word of the binary and advance the offset.
/// Just a wrapper for parsing a byte twice.
/// Returns the read word (Intel w/v operand).
fn parse_word(&mut self) -> Result<Word, DisasmError> {
log::debug!("Attempting to parse word at {:#04x} ...", self.offset);
let byte1 = self.parse_byte()?;
let byte2 = self.parse_byte()?;
Ok(u16::from_le_bytes([byte1, byte2]))
}
/// Parse a single of the binary, interpret it as signed and advance the
/// offset.
/// Returns the read byte added to the address of the subsequent instruction
/// to act as a relative offset (Intel Jb operand).
fn parse_j_byte(&mut self) -> Result<isize, DisasmError> {
log::debug!("Attempting to parse Jb at {:#04x} ...", self.offset);
// first interpret as 2-complement, then cast for addition
let byte = self.parse_byte()? as IByte as isize;
let next_addr = (self.offset + 1) as isize;
log::debug!(
"Parsed Jb consists of {byte:#04x} + {next_addr:#04x} = {:#04x}",
byte + next_addr
);
Ok(byte + next_addr)
}
/// Parse a word of the binary, interpret it as signed and advance the
/// offset.
/// Returns the read word added to the address of the subsequent instruction
/// to act as a relative offset (Intel Jw/Jv operand).
pub fn parse_j_word(&mut self) -> Result<isize, DisasmError> {
log::debug!("Attempting to parse Jv at {:#04x} ...", self.offset);
// first interpret as 2-complement, then cast for addition
let word = self.parse_word()? as IWord as isize;
let next_addr = (self.offset + 1) as isize;
log::debug!(
"Parsed Jv consists of {word:#04x} + {next_addr:#04x} = {:#04x}",
word + next_addr
);
Ok(word + next_addr)
}
/// Parse a single pointer of the binary and advance the offset.
/// Just a wrapper for parsing a byte 4 types and constructing a pointer
/// type.
/// Returns the read pointer (Intel p operand).
fn parse_ptr(&mut self) -> Result<Pointer32, DisasmError> {
log::debug!("Attempting to parse pointer at {:#04x} ...", self.offset);
let byte0 = self.parse_byte()?;
let byte1 = self.parse_byte()?;
let byte2 = self.parse_byte()?;
let byte3 = self.parse_byte()?;
Ok(Pointer32 {
raw: DWord::from_le_bytes([byte0, byte1, byte2, byte3]),
segment: Word::from_le_bytes([byte2, byte3]),
offset: Word::from_le_bytes([byte0, byte1]),
})
}
/// Parse a single ModRM byte, calculate the [`ModRmTarget`] (Memory or
/// Register) from that byte and advance the offset.
/// It is always just a single byte, even for word-width instructions.
/// Returns the [`ModRmTarget`] (either memory or a register) as well as the
/// `reg` bitfield, which will later be used to determine another register
/// or even mnemonic in the group-type instructions.
fn parse_modrm_byte(
&mut self,
register_width: Operand,
) -> Result<(ModRmTarget, RegisterId), DisasmError> {
let modrm = self.parse_byte()?;
let mode = (modrm >> 6) & 0b11;
let reg = (modrm >> 3) & 0b111;
let rm = modrm & 0b111;
log::debug!(
"{:#04x} deconstructed into: {:#b}, {:#b}, {:#b}",
modrm,
mode,
reg,
rm
);
// not unused, but overwritten before first read
#[allow(unused_assignments)]
let mut displacement = None;
match mode {
0b00 => {
if rm == 0b110 {
let word = Displacement::IWord(self.parse_word()? as IWord);
log::debug!("ModRM direct memory read at {word:?}");
displacement = Some(word);
return Ok((
ModRmTarget::Memory(MemoryIndex {
base: None,
index: None,
displacement,
}),
reg,
));
} else {
log::debug!("ModRM does not have a displacement");
displacement = None;
}
}
0b01 => {
let byte = Displacement::IByte(self.parse_byte()? as IByte);
log::debug!("ModRM has a single byte of displacement: {byte}.");
displacement = Some(byte);
}
0b10 => {
let word = Displacement::IWord(self.parse_word()? as IWord);
log::debug!("ModRM has a single word of displacement: {word}");
displacement = Some(word);
}
0b11 => {
log::debug!(
"ModRM selected Register to Register: ({rm:#b}) to/from RegID ({reg:#b})"
);
let target = match register_width {
Operand::Byte(_) => ModRmTarget::Register(Register::by_id(Operand::Byte(rm))?),
Operand::Word(_) => {
ModRmTarget::Register(Register::by_id(Operand::Word(rm as Word))?)
}
};
return Ok((target, reg));
}
_ => return Err(DisasmError::IllegalModRMByteMode(mode)),
};
let index = match rm {
0b0000 => MemoryIndex {
base: Some(Register::BX),
index: Some(Register::SI),
displacement,
},
0b0001 => MemoryIndex {
base: Some(Register::BX),
index: Some(Register::DI),
displacement,
},
0b0010 => MemoryIndex {
base: Some(Register::BP),
index: Some(Register::SI),
displacement,
},
0b0011 => MemoryIndex {
base: Some(Register::BP),
index: Some(Register::DI),
displacement,
},
0b0100 => MemoryIndex {
base: None,
index: Some(Register::SI),
displacement,
},
0b0101 => MemoryIndex {
base: None,
index: Some(Register::DI),
displacement,
},
0b0110 => MemoryIndex {
base: Some(Register::BP),
index: None,
displacement,
},
0b0111 => MemoryIndex {
base: Some(Register::BX),
index: None,
displacement,
},
_ => return Err(DisasmError::IllegalModRMByteIndex(rm)),
};
Ok((ModRmTarget::Memory(index), reg))
}
/// Match the ModRM `reg` bitfield to Intel Group 1-type instructions. Group
/// 1 always has an [`ModRmTarget`] as first and a [`Register`] as second
/// operand, which is determined by the ModRM `reg` field, aswell as the
/// bit-width of the instruction currently being parsed.
fn modrm_reg_to_grp1(
reg: u8,
target: ModRmTarget,
instruction_width: Operand,
) -> Result<Mnemonic, DisasmError> {
match instruction_width {
Operand::Byte(b) => match reg {
0b000 => Ok(Mnemonic::ADD_Ib(target, b)),
0b001 => Ok(Mnemonic::OR_Ib(target, b)),
0b010 => Ok(Mnemonic::ADC_Ib(target, b)),
0b011 => Ok(Mnemonic::SBB_Ib(target, b)),
0b100 => Ok(Mnemonic::AND_Ib(target, b)),
0b101 => Ok(Mnemonic::SUB_Ib(target, b)),
0b110 => Ok(Mnemonic::XOR_Ib(target, b)),
0b111 => Ok(Mnemonic::CMP_Ib(target, b)),
_ => return Err(DisasmError::IllegalGroupMnemonic(1, reg)),
},
Operand::Word(w) => match reg {
0b000 => Ok(Mnemonic::ADD_Iv(target, w)),
0b001 => Ok(Mnemonic::OR_Iv(target, w)),
0b010 => Ok(Mnemonic::ADC_Iv(target, w)),
0b011 => Ok(Mnemonic::SBB_Iv(target, w)),
0b100 => Ok(Mnemonic::AND_Iv(target, w)),
0b101 => Ok(Mnemonic::SUB_Iv(target, w)),
0b110 => Ok(Mnemonic::XOR_Iv(target, w)),
0b111 => Ok(Mnemonic::CMP_Iv(target, w)),
_ => return Err(DisasmError::IllegalGroupMnemonic(1, reg)),
},
}
}
/// Match the ModRM `reg` bits to Intel Group 2-type instructions. Group 2
/// always only has a single operand, the other is either `1` or the `CL`
/// register.
/// This function assumes the operand to be `1`.
/// See [`Self::modrm_reg_to_grp2_cl`] for the counter part.
fn modrm_reg_to_grp2_1(reg: u8, target: ModRmTarget) -> Result<Mnemonic, DisasmError> {
match reg {
0b000 => Ok(Mnemonic::ROL_b(target, 1)),
0b001 => Ok(Mnemonic::ROR_b(target, 1)),
0b010 => Ok(Mnemonic::RCL_b(target, 1)),
0b011 => Ok(Mnemonic::RCR_b(target, 1)),
0b100 => Ok(Mnemonic::SHL_b(target, 1)),
0b101 => Ok(Mnemonic::SHR_b(target, 1)),
0b110 => Ok(Mnemonic::SAR_b(target, 1)),
0b111 => Ok(Mnemonic::SAR_b(target, 1)),
_ => return Err(DisasmError::IllegalGroupMnemonic(2, reg)),
}
}
/// Match the ModRM `reg` bits to Intel Group 2-type instructions. Group 2
/// always only has a single operand, the other is either `1` or the `CL`
/// register.
/// This function assumes the operand to be [`Register::CL`].
/// See [`Self::modrm_reg_to_grp2_cl`] for the counter part.
fn modrm_reg_to_grp2_cl(reg: u8, target: ModRmTarget) -> Result<Mnemonic, DisasmError> {
match reg {
0b000 => Ok(Mnemonic::ROL_fromReg(target, Register::CL)),
0b001 => Ok(Mnemonic::ROR_fromReg(target, Register::CL)),
0b010 => Ok(Mnemonic::RCL_fromReg(target, Register::CL)),
0b011 => Ok(Mnemonic::RCR_fromReg(target, Register::CL)),
0b100 => Ok(Mnemonic::SHL_fromReg(target, Register::CL)),
0b101 => Ok(Mnemonic::SHR_fromReg(target, Register::CL)),
0b110 => Ok(Mnemonic::SAR_fromReg(target, Register::CL)),
0b111 => Ok(Mnemonic::SAR_fromReg(target, Register::CL)),
_ => return Err(DisasmError::IllegalGroupMnemonic(2, reg)),
}
}
/// Match the ModRM `reg` bits to Intel Group 3a/b-type instructions.
/// Group 3 selects an unary mnemonic with the `reg` bit fiels. The operand
/// is the [`ModRmTarget`].
fn modrm_reg_to_grp3(
&mut self,
reg: u8,
target: ModRmTarget,
width: Operand,
) -> Result<Mnemonic, DisasmError> {
match reg {
0b000 => match width {
Operand::Byte(_) => Ok(Mnemonic::TEST_Ib(target, self.parse_byte()?)),
Operand::Word(_) => Ok(Mnemonic::TEST_Iv(target, self.parse_word()?)),
},
// 0b001 => // unused
0b010 => Ok(Mnemonic::NOT(target)),
0b011 => Ok(Mnemonic::NEG(target)),
0b100 => Ok(Mnemonic::MUL(target)),
0b101 => Ok(Mnemonic::IMUL(target)),
0b110 => Ok(Mnemonic::DIV(target)),
0b111 => Ok(Mnemonic::IDIV(target)),
_ => Err(DisasmError::IllegalGroupMnemonic(3, reg)),
}
}
/// a.out pads the text section with 0x00 bytes. During parsing, these get
/// interpreted as `0x00 0x00`, which have to get removed for an authentic
/// disassembly.
/// This is done in favor of removing all 0x00 bytes in the beginning,
/// as this could remove an actual `0x00` byte as operand of the final
/// real instruction. Of course, this could remove an actual `0x00 0x00`
/// instruction from the end, but they would not have any effect on
/// execution anyway.
fn remove_trailing_padding(&mut self) {
let mut until = self.instructions.len();
for i in self.instructions.iter().rev() {
match i.opcode {
// 0x00 0x00 in binary
Mnemonic::ADD_FromReg(
ModRmTarget::Memory(MemoryIndex {
base: Some(Register::BX),
index: Some(Register::SI),
displacement: None,
}),
Register::AL,
) => until -= 1,
// stop when another instruction is hit
_ => break,
}
}
log::debug!(
"Truncated file by {} bytes by removing trailing padding bytes.",
self.text.len() - until
);
self.instructions.truncate(until);
}
/// Decode instructions by matching byte signature to their mnemonics and
/// depending on the instruction, parsing some operands afterwards.
/// All parsing is done in capsulated functions, here everything just
/// gets consolodated.
fn decode_instructions(&mut self) -> Result<(), DisasmError> {
log::debug!("Starting to decode text of length {}", self.text.len());
while self.offset < self.text.len() {
// reset mutable current instruction
self.instruction = Instruction::new();
self.instruction.start = self.offset;
// fetch next opcode
let opcode = self.text[self.offset];
// additional raw bytes will be pushed by parse functions
self.instruction.raw.push(opcode);
log::debug!("Parsing next opcode with opcode: {opcode:#04x}");
self.instruction.opcode = match opcode {
0x00 => modrm_8b_register!(self, ADD_FromReg),
0x01 => modrm_16b_register!(self, ADD_FromReg),
0x02 => modrm_8b_register!(self, ADD_ToReg),
0x03 => modrm_16b_register!(self, ADD_ToReg),
0x04 => Mnemonic::ADD_ALIb(self.parse_byte()?),
0x05 => Mnemonic::ADD_AXIv(self.parse_word()?),
0x06 => Mnemonic::PUSH_S(SegmentRegister::ES),
0x07 => Mnemonic::POP_S(SegmentRegister::ES),
0x08 => modrm_8b_register!(self, OR_FromReg),
0x09 => modrm_16b_register!(self, OR_FromReg),
0x0A => modrm_8b_register!(self, OR_ToReg),
0x0B => modrm_16b_register!(self, OR_ToReg),
0x0C => Mnemonic::OR_ALIb(self.parse_byte()?),
0x0D => Mnemonic::OR_AXIv(self.parse_word()?),
0x0E => Mnemonic::PUSH_S(SegmentRegister::CS),
0x0F => return Err(DisasmError::OpcodeUndefined(opcode)),
0x10 => modrm_8b_register!(self, ADC_FromReg),
0x11 => modrm_16b_register!(self, ADC_FromReg),
0x12 => modrm_8b_register!(self, ADC_ToReg),
0x13 => modrm_16b_register!(self, ADC_ToReg),
0x14 => Mnemonic::ADC_ALIb(self.parse_byte()?),
0x15 => Mnemonic::ADC_AXIv(self.parse_word()?),
0x16 => Mnemonic::PUSH_S(SegmentRegister::SS),
0x17 => Mnemonic::POP_S(SegmentRegister::SS),
0x18 => modrm_8b_register!(self, SBB_FromReg),
0x19 => modrm_16b_register!(self, SBB_FromReg),
0x1A => modrm_8b_register!(self, SBB_ToReg),
0x1B => modrm_16b_register!(self, SBB_ToReg),
0x1C => Mnemonic::SBB_ALIb(self.parse_byte()?),
0x1D => Mnemonic::SBB_AXIv(self.parse_word()?),
0x1E => Mnemonic::PUSH_S(SegmentRegister::DS),
0x1F => Mnemonic::POP_S(SegmentRegister::DS),
0x20 => modrm_8b_register!(self, AND_FromReg),
0x21 => modrm_16b_register!(self, AND_FromReg),
0x22 => modrm_8b_register!(self, AND_ToReg),
0x23 => modrm_16b_register!(self, AND_ToReg),
0x24 => Mnemonic::AND_ALIb(self.parse_byte()?),
0x25 => Mnemonic::AND_AXIv(self.parse_word()?),
0x26 => Mnemonic::OVERRIDE(SegmentRegister::ES),
0x27 => Mnemonic::DAA,
0x28 => modrm_8b_register!(self, SUB_FromReg),
0x29 => modrm_16b_register!(self, SUB_FromReg),
0x2A => modrm_8b_register!(self, SUB_ToReg),
0x2B => modrm_16b_register!(self, SUB_ToReg),
0x2C => Mnemonic::SUB_ALIb(self.parse_byte()?),
0x2D => Mnemonic::SUB_AXIv(self.parse_word()?),
0x2E => Mnemonic::OVERRIDE(SegmentRegister::CS),
0x2F => Mnemonic::DAS,
0x30 => modrm_8b_register!(self, XOR_FromReg),
0x31 => modrm_16b_register!(self, XOR_FromReg),
0x32 => modrm_8b_register!(self, XOR_ToReg),
0x33 => modrm_16b_register!(self, XOR_ToReg),
0x34 => Mnemonic::XOR_ALIb(self.parse_byte()?),
0x35 => Mnemonic::XOR_AXIv(self.parse_word()?),
0x36 => Mnemonic::OVERRIDE(SegmentRegister::SS),
0x37 => Mnemonic::AAA,
0x38 => modrm_8b_register!(self, CMP_FromReg),
0x39 => modrm_16b_register!(self, CMP_FromReg),
0x3A => modrm_8b_register!(self, CMP_ToReg),
0x3B => modrm_16b_register!(self, CMP_ToReg),
0x3C => Mnemonic::CMP_ALIb(self.parse_byte()?),
0x3D => Mnemonic::CMP_AXIv(self.parse_word()?),
0x3E => Mnemonic::OVERRIDE(SegmentRegister::DS),
0x3F => Mnemonic::AAS,
0x40 => Mnemonic::INC_Reg(Register::AX),
0x41 => Mnemonic::INC_Reg(Register::CX),
0x42 => Mnemonic::INC_Reg(Register::DX),
0x43 => Mnemonic::INC_Reg(Register::BX),
0x44 => Mnemonic::INC_Reg(Register::SP),
0x45 => Mnemonic::INC_Reg(Register::BP),
0x46 => Mnemonic::INC_Reg(Register::SI),
0x47 => Mnemonic::INC_Reg(Register::DI),
0x48 => Mnemonic::DEC_Reg(Register::AX),
0x49 => Mnemonic::DEC_Reg(Register::CX),
0x4A => Mnemonic::DEC_Reg(Register::DX),
0x4B => Mnemonic::DEC_Reg(Register::BX),
0x4C => Mnemonic::DEC_Reg(Register::SP),
0x4D => Mnemonic::DEC_Reg(Register::BP),
0x4E => Mnemonic::DEC_Reg(Register::SI),
0x4F => Mnemonic::DEC_Reg(Register::DI),
0x50 => Mnemonic::PUSH_R(Register::AX),
0x51 => Mnemonic::PUSH_R(Register::CX),
0x52 => Mnemonic::PUSH_R(Register::DX),
0x53 => Mnemonic::PUSH_R(Register::BX),
0x54 => Mnemonic::PUSH_R(Register::SP),
0x55 => Mnemonic::PUSH_R(Register::BP),
0x56 => Mnemonic::PUSH_R(Register::SI),
0x57 => Mnemonic::PUSH_R(Register::DI),
0x58 => Mnemonic::POP_R(Register::AX),
0x59 => Mnemonic::POP_R(Register::CX),
0x5A => Mnemonic::POP_R(Register::DX),
0x5B => Mnemonic::POP_R(Register::BX),
0x5C => Mnemonic::POP_R(Register::SP),
0x5D => Mnemonic::POP_R(Register::BP),
0x5E => Mnemonic::POP_R(Register::SI),
0x5F => Mnemonic::POP_R(Register::DI),
0x60..=0x6F => return Err(DisasmError::OpcodeUndefined(opcode)),
0x70 => Mnemonic::JO(self.parse_j_byte()?),
0x71 => Mnemonic::JNO(self.parse_j_byte()?),
0x72 => Mnemonic::JB(self.parse_j_byte()?),
0x73 => Mnemonic::JNB(self.parse_j_byte()?),
0x74 => Mnemonic::JZ(self.parse_j_byte()?),
0x75 => Mnemonic::JNZ(self.parse_j_byte()?),
0x76 => Mnemonic::JBE(self.parse_j_byte()?),
0x77 => Mnemonic::JA(self.parse_j_byte()?),
0x78 => Mnemonic::JS(self.parse_j_byte()?),
0x79 => Mnemonic::JNS(self.parse_j_byte()?),
0x7A => Mnemonic::JPE(self.parse_j_byte()?),
0x7B => Mnemonic::JPO(self.parse_j_byte()?),
0x7C => Mnemonic::JL(self.parse_j_byte()?),
0x7D => Mnemonic::JGE(self.parse_j_byte()?),
0x7E => Mnemonic::JLE(self.parse_j_byte()?),
0x7F => Mnemonic::JG(self.parse_j_byte()?),
// Group 1
0x80 => {
let (target, reg) = self.parse_modrm_byte(Operand::Byte(0))?;
let imm = self.parse_byte()?;
Self::modrm_reg_to_grp1(reg, target, Operand::Byte(imm))?
}
0x81 => {
let (target, reg) = self.parse_modrm_byte(Operand::Word(0))?;
let imm = self.parse_word()?;
Self::modrm_reg_to_grp1(reg, target, Operand::Word(imm))?
}
0x82 => {
// same as 0x80
let (target, reg) = self.parse_modrm_byte(Operand::Byte(0))?;
let imm = self.parse_byte()?;
Self::modrm_reg_to_grp1(reg, target, Operand::Byte(imm))?
}
0x83 => {
// byte extended version
let (target, reg) = self.parse_modrm_byte(Operand::Word(0))?;
let imm = self.parse_byte()?;
Self::modrm_reg_to_grp1(reg, target, Operand::Byte(imm))?
}
0x84 => modrm_8b_register!(self, TEST),
0x85 => modrm_16b_register!(self, TEST),
0x86 => modrm_8b_register!(self, XCHG),
0x87 => modrm_16b_register!(self, XCHG),
0x88 => modrm_8b_register!(self, MOV_FromReg),
0x89 => modrm_16b_register!(self, MOV_FromReg),
0x8A => modrm_8b_register!(self, MOV_ToReg),
0x8B => modrm_16b_register!(self, MOV_ToReg),
0x8C => modrm_sregister!(self, MOV_FromSReg),
0x8E => modrm_sregister!(self, MOV_ToSReg),
0x8D => modrm_16b_register!(self, LEA),
0x8F => {
let (target, _) = self.parse_modrm_byte(Operand::Word(0))?;
let mem = match target {
ModRmTarget::Memory(idx) => idx,
_ => {
return Err(DisasmError::IllegalOperand(
"POP (memory) instruction given a register to pop into".into(),
));
}
};
Mnemonic::POP_M(mem)
}
0x90 => Mnemonic::NOP(),
0x91 => Mnemonic::XCHG_AX(Register::CX),
0x92 => Mnemonic::XCHG_AX(Register::DX),
0x93 => Mnemonic::XCHG_AX(Register::BX),
0x94 => Mnemonic::XCHG_AX(Register::SP),
0x95 => Mnemonic::XCHG_AX(Register::BP),
0x96 => Mnemonic::XCHG_AX(Register::SI),
0x97 => Mnemonic::XCHG_AX(Register::DI),
0x98 => Mnemonic::CBW,
0x99 => Mnemonic::CWD,
0x9A => Mnemonic::CALL_p(self.parse_ptr()?),
0x9B => Mnemonic::WAIT,
0x9C => Mnemonic::PUSHF,
0x9D => Mnemonic::POPF,
0x9E => Mnemonic::SAHF,
0x9F => Mnemonic::LAHF,
0xA0 => Mnemonic::MOV_AL0b(self.parse_byte()?),
0xA1 => Mnemonic::MOV_AX0v(self.parse_word()?),
0xA2 => Mnemonic::MOV_0bAL(self.parse_byte()?),
0xA3 => Mnemonic::MOV_0vAX(self.parse_word()?),
0xA4 => Mnemonic::MOVSB,
0xA5 => Mnemonic::MOVSW,
0xA6 => Mnemonic::CMPSB,
0xA7 => Mnemonic::CMPSW,
0xA8 => Mnemonic::TEST_ALIb(self.parse_byte()?),
0xA9 => Mnemonic::TEST_AXIv(self.parse_word()?),
0xAA => Mnemonic::STOSB,
0xAB => Mnemonic::STOSW,
0xAC => Mnemonic::LODSB,
0xAD => Mnemonic::LODSW,
0xAE => Mnemonic::SCASB,
0xAF => Mnemonic::SCASW,
0xB0 => Mnemonic::MOV_ALIb(self.parse_byte()?),
0xB1 => Mnemonic::MOV_CLIb(self.parse_byte()?),
0xB2 => Mnemonic::MOV_DLIb(self.parse_byte()?),
0xB3 => Mnemonic::MOV_BLIb(self.parse_byte()?),
0xB4 => Mnemonic::MOV_AHIb(self.parse_byte()?),
0xB5 => Mnemonic::MOV_CHIb(self.parse_byte()?),
0xB6 => Mnemonic::MOV_DHIb(self.parse_byte()?),
0xB7 => Mnemonic::MOV_BHIb(self.parse_byte()?),
0xB8 => Mnemonic::MOV_AXIv(self.parse_word()?),
0xB9 => Mnemonic::MOV_CXIv(self.parse_word()?),
0xBA => Mnemonic::MOV_DXIv(self.parse_word()?),
0xBB => Mnemonic::MOV_BXIv(self.parse_word()?),
0xBC => Mnemonic::MOV_SPIv(self.parse_word()?),
0xBD => Mnemonic::MOV_BPIv(self.parse_word()?),
0xBE => Mnemonic::MOV_SIIv(self.parse_word()?),
0xBF => Mnemonic::MOV_DIIv(self.parse_word()?),
0xC0..=0xC1 => return Err(DisasmError::OpcodeUndefined(opcode)),
0xC2 => Mnemonic::RET_Iw(self.parse_word()?),
0xC3 => Mnemonic::RET,
0xC4 => {
let (target, reg_id) = self.parse_modrm_byte(Operand::Word(0))?;
let reg = Register::by_id(Operand::Word(reg_id as Word))?;
let ptr = Pointer16::try_from(target)?;
Mnemonic::LES(reg, ptr)
}
0xC5 => {
let (target, reg_id) = self.parse_modrm_byte(Operand::Word(0))?;
let reg = Register::by_id(Operand::Word(reg_id as Word))?;
let ptr = Pointer16::try_from(target)?;
Mnemonic::LDS(reg, ptr)
}
0xC6 => {
let (target, _) = self.parse_modrm_byte(Operand::Byte(0))?;
Mnemonic::MOV_Ib(target, self.parse_byte()?)
}
0xC7 => {
let (target, _) = self.parse_modrm_byte(Operand::Word(0))?;
Mnemonic::MOV_Iv(target, self.parse_word()?)
}
0xC8..=0xC9 => return Err(DisasmError::OpcodeUndefined(opcode)),
0xCA => Mnemonic::RETF_Iw(self.parse_word()?),
0xCB => Mnemonic::RETF,
0xCC => Mnemonic::INT(3),
0xCD => Mnemonic::INT(self.parse_byte()?),
0xCE => Mnemonic::INTO,
0xCF => Mnemonic::IRET,
// Group 2
0xD0 => {
let (target, reg) = self.parse_modrm_byte(Operand::Byte(0))?;
Self::modrm_reg_to_grp2_1(reg, target)?
}
0xD1 => {
let (target, reg) = self.parse_modrm_byte(Operand::Word(0))?;
Self::modrm_reg_to_grp2_1(reg, target)?
}
0xD2 => {
let (target, reg) = self.parse_modrm_byte(Operand::Byte(0))?;
Self::modrm_reg_to_grp2_cl(reg, target)?
}
0xD3 => {
let (target, reg) = self.parse_modrm_byte(Operand::Word(0))?;
Self::modrm_reg_to_grp2_cl(reg, target)?
}
0xD4 => Mnemonic::AAM(self.parse_byte()?),
0xD5 => Mnemonic::AAD(self.parse_byte()?),
0xD6 => return Err(DisasmError::OpcodeUndefined(opcode)),
0xD7 => Mnemonic::XLAT,
0xD8..=0xDF => return Err(DisasmError::OpcodeUndefined(opcode)),
0xE0 => Mnemonic::LOOPNZ(self.parse_j_byte()?),
0xE1 => Mnemonic::LOOPZ(self.parse_j_byte()?),
0xE2 => Mnemonic::LOOP(self.parse_j_byte()?),
0xE3 => Mnemonic::JCXZ(self.parse_j_byte()?),
0xE4 => Mnemonic::IN_AL(self.parse_byte()?),
0xE5 => Mnemonic::IN_AX(self.parse_byte()?),
0xE6 => Mnemonic::OUT_AL(self.parse_byte()?),
0xE7 => Mnemonic::OUT_AX(self.parse_byte()?),
0xE8 => Mnemonic::CALL_v(self.parse_j_word()?),
0xE9 => Mnemonic::JMP_v(self.parse_j_word()?),
0xEA => Mnemonic::JMP_p(self.parse_ptr()?),
0xEB => Mnemonic::JMP_b(self.parse_j_byte()?),
0xEC => Mnemonic::IN_ALDX,
0xED => Mnemonic::IN_AXDX,
0xEE => Mnemonic::OUT_ALDX,
0xEF => Mnemonic::OUT_AXDX,
0xF0 => Mnemonic::LOCK,
0xF1 => return Err(DisasmError::OpcodeUndefined(opcode)),
0xF2 => Mnemonic::REPNZ,
0xF3 => Mnemonic::REPZ,
0xF4 => Mnemonic::HLT,
0xF5 => Mnemonic::CMC,
// Group 3a
0xF6 => {
let (target, reg) = self.parse_modrm_byte(Operand::Byte(0))?;
self.modrm_reg_to_grp3(reg, target, Operand::Byte(0))?
}
// Group 3b
0xF7 => {
let (target, reg) = self.parse_modrm_byte(Operand::Word(0))?;
self.modrm_reg_to_grp3(reg, target, Operand::Word(0))?
}
0xF8 => Mnemonic::CLC,
0xF9 => Mnemonic::STC,
0xFA => Mnemonic::CLI,
0xFB => Mnemonic::STI,
0xFC => Mnemonic::CLD,
0xFD => Mnemonic::STD,
// Group 4
0xFE => {
let (target, reg) = self.parse_modrm_byte(Operand::Byte(0))?;
match reg {
0b0 => Mnemonic::INC_Mod(target),
0b1 => Mnemonic::DEC_Mod(target),
_ => return Err(DisasmError::IllegalGroupMnemonic(4, reg)),
}
}
// Group 5
0xFF => {
let (target, reg) = self.parse_modrm_byte(Operand::Word(0))?;
match reg {
0b000 => Mnemonic::INC_Mod(target),
0b001 => Mnemonic::DEC_Mod(target),
0b010 => Mnemonic::CALL_Mod(target),
0b011 => Mnemonic::CALL_Mp(Pointer16::try_from(target)?),
0b100 => Mnemonic::JMP_Mod(target),
0b101 => Mnemonic::JMP_Mp(Pointer16::try_from(target)?),
0b110 => Mnemonic::PUSH_Mod(target),
// 0b111 => unused
_ => return Err(DisasmError::IllegalGroupMnemonic(5, reg)),
}
}
};
// Save parsed instruction
log::debug!("{}", self.instruction);
self.instructions.push(self.instruction.clone());
// Advance offset to hover the next potential opcode
self.offset += 1;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic() {
let text = Vec::from([0x0, 0x0]);
let mut disassembler = Disassembler {
offset: 0,
text,
instruction: Instruction::new(),
instructions: Vec::new(),
};
disassembler.decode_instructions().unwrap();
let instructions = disassembler.instructions;
assert_eq!(
instructions[0],
Instruction {
start: 0,
raw: Vec::from([0, 0]),
opcode: Mnemonic::ADD_FromReg(
ModRmTarget::Memory(MemoryIndex {
base: Some(Register::BX),
index: Some(Register::SI),
displacement: None
}),
Register::AL
)
}
)
}
}